

# Gene to Protein Pvt. Ltd.

# Compli-Script<sup>™</sup>1st strand cDNA synthesis Kit

## Introduction

The Gene to Protein Compli-Script<sup>TM</sup> 1<sup>st</sup> strand cDNA synthesis kit is meant for both cDNA using Oligo dT or random primers from either total RNA or mRNA. The system uses MMLV Reverse Transcriptase with reduced RNase H activity in an optimized reaction buffer, and it can detect a wide range of RNA targets from 100 bp to > 6 kb. The amount of starting material can range from 20 ng to 1  $\mu$ g of total RNA.

The enzyme can synthesize cDNA optimally at a temperature of 42°C, providing increased specificity, higher yields of cDNA, working efficiently on RNA having secondary structures, and generating more full-length product than other reverse transcriptases.

#### **Kit content**

| S.No | Cat. No  | Contents                      | 5 RXN   | 50 RXN  | 100 RXN |
|------|----------|-------------------------------|---------|---------|---------|
| 1    | RNA-1000 | MMLV RT Enzyme (80 U/µL)      | 5 µL    | 50 µL   | 100 µL  |
| 2    | RNA-900  | 5X Reaction Buffer mix        | 20 µL   | 200 µL  | 400 µL  |
| 3    | RNA-600  | Oligo dT <sub>21</sub> (50µM) | 2.5 µL  | 25 µL   | 50 µL   |
| 4    | RNA-700  | Random Nonamer (50µM)         | 2.5 µL  | 25 µL   | 50 µL   |
| 5    | RNA-800  | dNTP (10 mM)                  | 5 µL    | 50 µL   | 100 µL  |
| 6    | RNA-500  | RNase inhibitor (40 U/µL)     | 1.25 µL | 12.5 µL | 25 µL   |
| 7    | RNA-1200 | Nuclease free water           | 1 mL    | 1 ml    | 2 ml    |
| 8    | RNA-200  | DTT (100mM)                   | 5 µL    | 50µL    | 100µL   |

#### Application

- First strand cDNA synthesis
- Producing cDNA for PCR and Realtime PCR
- Gene expression validation of Microarray experiments
- RT-PCR validation of silencing by RNA interference

# **Guideline for RNA quality and quantity**

- High-quality, intact RNA is essential for successful full length cDNA synthesis. For low copy-number genes or longer targets, use more starting material (>100 ng total RNA). Estimate RNA quality by Bioanalyser and Gel electrophoresis to evaluate quality
- RNA should be devoid of any RNase contamination and aseptic conditions should be maintained during
  isolation. Trizol (or any similar product) or any spin column-based RNA isolation kit may be used.

#### Procedure

Setting up Reaction mix: Total volume  $20 \mu L$ 

| • •  |                                                                                                |                   |  |
|------|------------------------------------------------------------------------------------------------|-------------------|--|
| S.No | Components                                                                                     | Volume            |  |
| 1    | 50 μM oligo(dT) <sub>21</sub> primer/50 μM Random Nanomer / 10 μM gene-specific reverse primer | 0.5µL             |  |
| 2    | Template RNA                                                                                   | 100 ng- 1 µg mRNA |  |
| 3    | RNase-Free dH2O                                                                                | Variable          |  |
|      | Total                                                                                          | 12.75 µL          |  |

Spin briefly and heat for 5 min at 65°C and chill immediately on ice, followed by addition of undermentioned components:

www.genetoprotein.com
 info@genetoprotein.com
 800 GENOME, 800 GENETIC

Gene to Protein Pvt. Ltd.



| S.No                                                       | Components         | Volume  |  |
|------------------------------------------------------------|--------------------|---------|--|
| 4                                                          | 5X Reaction Buffer | 4 µL    |  |
| 5                                                          | 10 mM dNTP mix     | 1 µL    |  |
| 6                                                          | RNase Inhibitor    | 0.25 µL |  |
| 7         MMLV Reverse Transcriptase (80U/μL)         1 μL |                    | 1 μL    |  |
| 8                                                          | DTT (100 mM)       | 1 μL    |  |
|                                                            | Total              | 20 µL   |  |

Spin briefly and incubate at 42°C\* for 60 min

\*The optimal temperature for reverse transcription depends on primer and target sequences. Also, incubation time can be varied from 30-60 min depending upon the size and complexity of gene.

Result



Fi tot La La La La La

Figure: RT-PCR of a 180 bp and 400 bp gene fragment with 100ng of

total RNA (Human Blood) using β-actin and GAPDH primers. Lane 1 – 400 bp PCR product using GAPDH primers Lane 2 – Negative control (NC). Lane 3 – 180 bp PCR product using β-Actin primers Lane 4 – NC Lane 5 – 1kb ladder

## Troubleshooting

| Observation                 | Possible cause                                                                  | Recommended action                                                                                                                                                                                       |
|-----------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No amplification<br>product | No cDNA synthesis<br>(temperature for Reverse<br>transcription may be too high) | Lower temperature for Reverse transcription step                                                                                                                                                         |
|                             | RNase contamination                                                             | Maintainaseptic conditions; add RNase inhibitor.<br>(Although Buffer already contains inhibitor)                                                                                                         |
|                             | Not enough starting template<br>RNA                                             | Increase concentration of template RNA; use 100 ng t $_{\rm 1}$ 1µg of total RNA                                                                                                                         |
|                             | RNA has been damaged or<br>degraded                                             | Replace RNA ifnecessary                                                                                                                                                                                  |
|                             | RT inhibitors are present in RNA                                                | Remove inhibitors in RNA preparation by an additiona<br>70% ethanol wash.<br>Note: Inhibitorsof RT include SDS, EDTA, guanidium<br>salts, formamide, sodium phosphate, and spermidine.                   |
|                             | Annealing temperature is high                                                   | Decrease temperature as necessary                                                                                                                                                                        |
|                             | Extension time is short                                                         | Set extension time @ 60 set/b                                                                                                                                                                            |
|                             | No. of cycles less                                                              | Increase cycle number                                                                                                                                                                                    |
| Low specificity             | Reaction conditions not optimal                                                 | Optimize magnesium concentration 🔘 🌼                                                                                                                                                                     |
|                             |                                                                                 | Optimize primer                                                                                                                                                                                          |
|                             |                                                                                 | Optimize theannealing temperature and extension tim                                                                                                                                                      |
|                             |                                                                                 | Increase temperature of RT reaction                                                                                                                                                                      |
|                             | Oligo(dT) or random primers<br>used                                             | Use only genespecific primers                                                                                                                                                                            |
| Unexpected bands<br>after   | Contamination from genomic DNA                                                  | Pretreat RNA with DNasebefore use                                                                                                                                                                        |
| electrophoretic<br>analysis |                                                                                 | Design primers that anneal to sequence in exons on<br>both sides of an intron or at the exon/exon boundary<br>the mRNA to differentiate between amplified cDNA ar<br>potential contaminating genomic DNA |
|                             | Nonspecific annealing of                                                        | Vary theannealing temperature                                                                                                                                                                            |
|                             | primers                                                                         | Optimize the magnesium concentration for each template and primer combination                                                                                                                            |
|                             | Primer dimer                                                                    | Redesign primers without complementary sequence a the 3'ends                                                                                                                                             |